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Abstract

In an uncertain world, a rational planning agent

must simultaneously reason with uncertainty about
expected outcomes of actions and preferences for
those outcomes. This work focuses on system-
atically exploring the interactions between prefer-

ences for the durations of events, and uncertainty,
expressed as probability distributions about when
certain events will occur. We expand previous work

by representing events and durations that are not
under the control of the agent, as well as quanti-

tative beliefs about when those events are likely to

occur. Two reasoning problems are introduced and
methods for solving them proposed. First, given a

desired overall preference level, compute the like-

lihood that a plan exists that meets or exceeds the
specified degree of preference. Second, given an
initial set of beliefs about durations of events, as

well as preferences for times, infer a revised set of
preferences that reflect those beliefs.

I ntroduction

[13]. As automated planning matures as a software technol-
ogy, new techniques inspired by decision theory are being
integrated to address the fact that plans are executed in the
world, with varying degrees of value to the planner based
on their outcomeg1]. A principled approach to schedul-
ing problems such as the above is essential for a decision-
theoretic temporal planner that takes into account pratere
when determining plan quality.

The goal in this paper is to devise systematic methods for
exploring the interactions between temporal preferennds a
uncertainties. We introduce a framework that generalizes t
Simple Temporal ProbleSTP) formulation[4], called the
Simple Temporal Problem with Preferences and Probabili-
ties or STP. One component of the generalization adds the
capability to express preferences for times, followfiglg The
other component allows for the designation of uncontrddlab
events and the associated probability space over times.

Besides defining the SPRramework, the contribution of
this paper is to describe solutions to two practical reaspni
problems arising from the interactions between probadslit
and preferences. We extend techniques previously used to
solve temporal problems with preferences to identify solu-
tions that are both globally preferred and highly probable.

Decision-theoretic planning is surveyed . Most ap-

Rational agents are capable of mentally exploring the interproaches either extend classical planning techniques er em
actions between what they believe and what they desire gJoy Markov Decision Processes (e[8]), in contrast to our
outcomes of actions. More often than not, the value of theconstraint-based focus. Of work on temporal reasoning for
outcomes of actions cannot be described by a single atibutplanning, a characteristic example[@, who, like us, con-

but rather by attributes that combine to determine the diverasider exogenous events, but who focus on eliciting probabil
value of the outcom§8]. Furthermore, the outcome of ac- ties and qualitative preferences from a human expert.

tions may not be known with certainty, as a result of the need Inthe constraints literature, preferences are commoply re
to interact with the world.
Many practical planning or scheduling problems surrouncadopt. An alternative formulation for qualitative prefeces
events that are not controlled by the planning agent. For exis CP-netd2]. Uncertainty has also been represented both
ample, Earth Science observation scheduling may involve agjualitatively and quantitatively; probabilistic framexks in-
signing times for the remote sensing of an area of interest oplude that o{6], which we adopt, and its extensions.

the Earth either before, during, or after a fire has occurred Generic constraint-based frameworks that account for both
within that area. The start and end of the fire are not knowrpreferences and uncertainty incluti. Our work is dis-
with certainty at planning time, but Earth Science modelginguished by restricting attention to Simple Temporal-con
might be available to estimate a set of times when fires arstraints. Prior work in this line has considered STPs with
likely to occur. In addition, the scientific utility of an obiva-
tion may vary based on when the observation is taken relativeonstraints but no preferencl2; 17. While [15] incorpo-

to the fire, resulting in preferences for temporal orderangs

resented using semiring-based formulations, the appnwach

preferences but no uncertaini@l; and STPs with uncertainty

rate both aspects, that work considers only qualitativeenc

durations between planned events and uncontrollable ®ventainty, that is, with implied uniform distributions.



2 Example: Earth Science Campaign
Observation Scheduling

An Earth Science campaigs a systematic set of activities
undertaken to meet a particular science objective. Here, w
present a hypothetical campaign based on a science olgiecti
to test an emissions model predicting the aerosols relégsed
wildfires. Data on several variables must be gathered in or
der to accomplish the analysis, and several remote sensol
such as those on the Landsat satellite, provide data preduc
at various spatial resolutions relevant to these varialftes-
ferred times for acquiring Landsat data for vegetation fgpe
a region of interest in the northern hemisphere would be thi
prior June or July in the same year that the fire burned, when
forested land can most easily be spectrally distinguistad f
grassland. For mapping aerosol concentration, images coin
cident to burning must be obtained; the Terra and/or Aqua
satellites have relevantinstruments. For the burned éega, over V. An STPP, like an STP, can be organized as a net-
should be acquired after (though not too long after) the firayork of variables representing events, and links labeletl wi
is out, while for mapping vegetation moisture content, iype constraint information.
spectral data from an EO-1 Hyperion instrument are relevant  Following recent approachés; 12; 17; 1%, we extend the
and the most useful data would be that acquired just precesTPP framework to represent temporal uncertainty. First, w
ing the fire. partition V' into two groups: thelecision variabled/; and

From this description, the inputs to a campaign planninghe parametersV,, representing uncontrollable events. We
problem potentially consist of the following charactddst  further distinguish between binadgcision constraintéC,),
those which the agent executing the plan must satisfyuand
certainty constraint$C, ), those which “nature” will satisfy.

An uncertainty (temporal) constraint depicts a duration as
e user preferences for when an observation should b@ continuous random variable. To ease the exposition, we

taken; and assume that the uncertainty constraints are mutually emep

e temporal ordering constraints between planned event ent; this allows the constraints i, to be expressed in

- the form ([a;;, bij], pi;), wherep;; : [a;j,bi5] — [0,1] is
and uncontrollable, exogenous events such as fires. 032 Vg 1y 1] N ©)r gl [
g the probability density function over the designated waér

_ A reasonable goal, given these inputs_, is to generate a Comve call the frameworkV;, V,,, C4, C,,), whereCy are soft
cise representation of the set of solutions (assignments @fonstraints, &imple Temporal Problem with Preferences and
times and sensing resources) that are maximally prefengd a Probabilities or STP.

reflect a set of initial beliefs about when exogenous evemets a . : )
likely to occur. The next section formulates a framework ca-EX@mple 1 Earth Science Observation Probleminputs:

pabie of describing the problem and generating this outpui. Variables inV, standing for two controllable events consist-
ing of taking an observatior(ps1, Obs2), and two uncon-

. i trollable events inV,, the start and end of a fird"(S, F'E)

3 Simple Temporal Problemswith (for simplicity, observations are viewed as instantanpass

Preferences and Probabilities shown in Figure 1. There is also an event TR representing

. . - . the beginning of time. Soft constrainfs(t), f2(t) in Cy are

A soft temporal constrairdepicts restrictions on the distance ,q5ociated with the durations betwe@bs1 andFS. and be-
between arbitrary pairs of distinct events, and a useripec  eanops2 and F E, respectively. For examplgﬁy (t) may
preference for a subset of those distances. In Khatib Blal. oy )ress that there is no value for takiBs1 after the start
a soft temporal constraint between everdad; is defined as ot ihe fire (7.5), and a preference for times that are as close
a p:_;ur(I, fij), wherel is a set .Of intervalg[a, b],a < b} a’.‘d to F'S as possible. Similarlyf2(t) expresses a preference
fij is alocal preference functiofrom I to a setd of admis- ¢4 )5,59 happening beforé'E as close as possible, with a
sible preference valuéswWhen[ is a single interval, a set of penalty if the observation is taken after the fire. Uncetgain
soft constraints definesimple Temporal Problem with Pref-  constraints),, p» in C,, are associated with random variables
erencegSTPP), a generalization of a Simple Temporal Probyepresenting the start time and the duration of the fire. @hes
lem [4]. An STPP can be depicted as a pait C) whereV  constraints are based on Earth Science models about fires in
is a set of variables representing events or other timetpoin the area of interest. For exampje, may express a normal
andC = {([a;, bi;], fi;)} is a set of soft constraints defined gjstribution over the range of times.

p2(t)
[60,120]

[, ]

Figure 1: STP Representing the Fire Campaign Scenario

e a set of temporal, spatial, and resource constraints o
when and where images are to be taken;

For the purposes of this paper, we assume the valuglsare 2For instance, imagine that the Earth Science planner niainta
totally ordered, and that contains designated values for minimum a Bayes network elsewhere to express the dependenciespredch
and maximum preference. ability p(t) is given implicitly by that network.



A solutionto an STP is a set of assignments 6 = V,; U [0.4] f(t) = 4-t
V, that satisfies all the constraints@ = C; U C,,. Given
an STP P, let Sol(P) be the set of all solutions t&. An
arbitrary solutions € Sol(P) can be viewed as having two
parts: s4, the set of values assigned, ands,,, the set of
values assigned tg, .

Our goal is to develop efficient methods for generating ¢ °

[wx] (1)

(1] Iy.2]

[1,5] Normal(3,1) [uv] Normal(a,b)

concise, graphical representation of subsetSda(P) corre-

sponding to highly likely, globally preferred solutionshi$

STP-based graphical representation is calldé@gxble (tem-

poral) plan Many planning systems use an STP-based repre (a)
sentation of the temporal aspects of their plEi6}.

Following previous efforts, methods for flexible temporal
planning under uncertainty can be distinguished based-on a
sumptions about the strategy to be applied in executing th
flexible plan. A static execution strateggssumes no ac-
cess to the values of, during plan execution; by contrast ciently is called thehop methogdfirst introduced if9]. The
a dynamic execution strategg applied as plan execution chop method is a two-step search process of iterativelyshoo
proceeds and the values of are observed over timgl2;  ing a preference value, “chopping” every preference func-
15]. The results of this paper assume a static execution stration at that point, and then solving an underlying STP defined
egy; we defer discussions of planning for dynamic executiorby the interval of temporal values whose preference values
of STP's to future work. lie above the chop line, i.€{z : f(z) > a}; henceforth, we
refer to this as thehop interval The highest chop point that
results in a solvable (i.e. consistent) STP produces a feexib
plan whose solutions are exactly the optimal solutions ef th
original STPP (based on the criteria of weakest link). Bmar
search can be used to select candidate chop points, making
éhe technique for solving the STPP tractable.

(b)

igure 2: lllustrating the Interactions between Temporal
robabilities and Preferences

Component Solvers. The solution methods described be-
low are based on different decompositions of an Siffo
component sub-problems for which efficient solution meth-
ods exist. As a final preliminary, we fix some terminology
and briefly summarize these sub-problem solution method
Given an STP, theunderlying STPRs the problem that re- . S o
sults when a constraiffa, b], pxy } € C., is replaced by the 4 Assessing the Likelihood of Achieving
STP component constraifat, b]. Theunderlying Probabilis- Preferred Plans

tic STPis the problem that results when each soft constrainII_ . . . . .
{[a,b], fxy} € Cyis replaced by the STP component con- his section and the next consider two practical reasoning

straintja, b. Theunderlying STReplaces all constraints in Problems involving the interactions of uncertainty andfpre
C, U C,, with their STP components erences about time, and demonstrate how under certain as-
Efficient solution methods for STPs are well-knoj4).  SUMPtions they can be solved efficiently using & PThe

A graphical representation of an STP is a Simple Temporafl'rSt.pr(_)blem addresses the questiniat are the.chancelzs of
Network (STN), a graph of nodes representing the variable&Chi€ving a certain level of global preference, given myelel
of the STP and edges labeled with the interval temporal condPout the way the world will behavem illustrate, consider
straints. Each STN is associated with a distance grapheteriv € simple STPin Figure 2(a). HereVy = {A, B} and
from the upper and lower bounds of the interval constraints+ = {C'}, and there are two decision constraints, between
An STN is consistent if the distance graph does not contain & 2ndC and betweeni andB. B is tightly constrained to

; < thi P ; : tly one time unit aftet. The soft constrainBC
negative cycle; this condition can be determined by apglyin 9¢CUr éxactly o ;
a single-source shortest path algorithm such as BeilmadFo Prefers durations betweefi and C' to be minimal (higher

In addition to consistency, it is often useful to determiae f Values more preferred); this is expressed by the preference

an STN theequivalentSTN (in terms of a set of solutions) in funqtionf(t) =4-t The.pr.obability density f”F‘C“O“ for
which all the intervals are as “tight’ as possible. Thigimal AC is represented by specifying the named function (normal)

networkcan be determined by applying an All-Pairs ShortestVith mean (3) and standard deviation (1). .
Path algorithm to the input netwofK]. Suppose an agent wants to infer the chances of there being
Previous efforts in solving STPPs have been based on ides solution with an overall preference level of 2 or greatee. W

tifying and applying criteria for “globally preferred sgions” ~ ¢an answer this question by restricting assignments
such as “weakest link” (maximize the least preferred localVith @n f value of 2 or greater, and propagating the temporal

preference), “pareto”, and “utilitariari’10]. Developing effi- constraints over th_e ne_twork. Th.'s means shrinking e
cient solvers has required local preference functionsatat interval to[0, 2], which in turn shrinksAC'to [1, 3]. Conse-
linear or semi-conve%.One method for solving STPPs effi- duéntly, the answer to the pgsed question can be obtained by
computingP(1 <t < 3) = [ p(t)dt.

3A function issemi-conveif drawing a horizontal line anywhere
in the Cartesian plane of the graph of the function is suctttigaset  convexity ensures that there is a single interval above hap point,
of X such thatf(X) is not below the line forms an interval. Semi- and hence that the resulting problem is an STP.



P((0 < AB < 10) A (0 < BC < 10)) from (1), but the
true probability isP((0 < AB < 10) A (0 < BC < 10) A

(AB + BC > 10)) or simply P(AB 4+ BC > 10), assuming
the bounds. (Note that the AB and BC random variables are
no longer independent under the condition ABC > 10.)

We can reformulate this a(\/,(AB = x ABC > 10 — z))

and calculate it as

uniform [0,10] f(t) =t

(%) ([ o)

5 Inducing Preferences from Probabilities

In this section we consider a sort of dual problem to thatgose

in the previous sectiorgiven current expectations about the
Figure 3: Why the Upper Bound May Not be Tight world, how can preferences be systematically adjusted to fit
with those expectationsFor example, a preference might
be expressed for a particular gap between an uncontrollable
event such as a volcano eruption, and a remote sensing event.
There may also be a belief, expressed as a probability-distri
bution, regarding when the volcano will occur. From these
inputs, if may be possible to infer a set of preferred (high
1. Given an input STR chop each local preference func- utility) start times for the observation.

This technique can be generalized for arbitrary &TP
Given an STP P, to determine the probability of achieving
a solution of global preference valgeor higher, we perform
the following procedure:

tion at the designated preference vafueForm a new The solution involves applying the concept of expected
problem by replacing each associated interval with theutility from decision analysi¢8] to represent induced local
resulting chop interval. preferences. Once the reasoning is complete, the “output”

2. Determine the minimal network of the underlying STP preferences on the decision constraints thus reflect beth th
of the new problem, using an All-Pairs Shortest Path al-Preferences of the agent and its expectation about the-uncer

gorithm. tainty in the world. The solution consists of three steps:
3. Compute the overall probability of the underlying prob- 1. Given an input STR derive the minimal network of the
abilistic CSP. Assuming independence of the, the underlying STP.
value to be computed is 2. Apply a local consistency algorithm (discussed below)
to the resulting STP(i.e. with the tightened interval
H Plai; <t <bij), 1) constraints) to compute the induced preferences.
Pia 3. Solve the underlying STPP of the resulting network us-
where for each uncertainty constraifat,;, b;;] is the in- ing the chop solver to find the globally preferred solu-
terval of the minimal network derived from step 2. tions.

Provided step 3, which may be done using numerical in\We refer to the set of solutions making up the flexible plan
tegration, is of polynomial complexity, the whole method that results from this method as tlegpected globally pre-
is polynomial. Steps 2 and 3 of this method resemble thderredsolutions.
method proposed ifiL7] for solving Probabilistic STPs. Un- To examine the second step in more detail, we mimic the
fortunately, it can be easily shown that the computed valuenethod oftriangular reductionfound in[12], used to solve
provides only an upper bound on the probability that the soSimple Temporal Problems with Uncertainty (STPUs). We
lutions defined at that chop level or above will succeed. Thatonsider all STBs as collections ofriangular subnetworks
this is not a tight upper bound can be demonstrated by af the form illustrated by Figure 2(b), where there is a sin-
simple example, found in Figure 3. In this example, chop-gle uncertainty constraint cAC with boundgu, v], and two
ping the preference function at 10 and solving the undeglyin decision constraints oA B and BC' with bounds[y, z] and
STP would not shrink the temporal bounds of the uncertaintyw, x] respectively. As in the Earth Science examplenight
links. Therefore, the probability of succeeding returngd b be the beginning of time3 might be the start of a planned
this method would be 1, although in fact some of the probaebservation, and” the onset of a fire. The goal is to com-
bility mass is lost as a result of the chop. pute theregressiorof p 4 over fp¢ to find the induced soft

Despite these limitations, an upper bound computatiordecision constrainf,z. (The case in whictiB is also as-
may be useful; if the bound is too low, the planner will be sociated with a soft constraint can be handled as part of the
forced to “lower expectations” of the plan branch under con-general solution method discussed later.)
sideration, i.e. its overall expected preference level. To handle the single triangle case, we need to consider

A tighter bound would require examining the mass of thethree possible orderings betwegnandC. We assume that
polytope defined by all the constraints (a similar obseovati step 1 of the approach has been applied, so that the triangula
was made if17]). Applied to the previous example, we get network has been minimized. B precede€’ (w > 0), then



the induced soft constraint {3y, z], fap}, where

fan) = [ R — oty

Although in general this function cannot be derived analyti
cally, with certain restrictions placed on the shape of thed-p
erence function it may be possible to compute it directly. Al
ternatively, we can estimate it numerically (e.g. Montel@ar
integration), or even perform crude but fast estimatioredas [0,10] p2(t
on the expected value. (& precedesB (z < 0), then in- Normal(7,1)
tuitively the planner does not require any knowledge abou
the expected time of in order to deduce the preferred time
to executeB dynamically (the soft constraint aAB in this
case can be derived from that BIC'). However, recall that
we focus only on the situation of static execution, in which
knoWledge abOUC |S nOt aVailable at planning t|me ThIS Figure 4: Examp|e of Induced Preferences
means that the predictive models of the Precede case are rel-
evant to planning the Follow case: the same technique can be
followed. Finally, for static execution the same also a@plf  conclusion of the proof consists of observing that the ulyeer
B andC are unorderedq < 0,z > 0). ing procedures applied in the method (all-pairs shortett, pa
To derive the induced constraints for general STiet- the local-consistency technique for .derl\./lng |nd_uced gref
works, we consider all triangles separately, propagatieg t €NC€S; the chop solver, and numerical integration for deter
effects of one operation to neighboring triangles, unéltiet- ~ Mining the expected values) are all polynomial.
work is quiescent. Thus, the structure of the algorithnrigsi ~ To illustrate step 2 of the method in the general case, con-
lar to determining path-consistency in an STP network. Propsider the STP in Figure 4. This problem consists of two
aga‘[ion requires an operation of Combining local prefgﬁenchClSlon constraints oBC' and BD with associated prefer-
functions. The same combination operator as that used fg@nce functions, g defined,f clearly preferring larger dura-
determining local consistency for preference netwdd4]  tions between3 andC, andg preferring smaller durations.
can be applied here for propagating soft constraints. AftedfWo uncertainty constraints cAC' and AD consist of nor-
the network has reached quiescence, the planner can saféljal probability density functions, andp, with means and
discard the probability density functiopsy in C,,. Remov-  Standard deviations indicated in parentheses. The goal is t
ing them results in the underlying STPP, which can be solvednfer the induced preference functiénon AB (the network
by the chop methof9]. is already minimal).
The following result summarizes these core ideas. It will First, considering the trianglé BC', one induced function
be proved informally and illustrated by an example. Follow-for & arises as follows:
ing terminology in[12], an STP will be said to bepseudo-
controllable if no interval in an uncertainty constraint is
. ” i ha(t)
squeezed” as the result of performing step 1 above (comput- 0
ing the minimal network). We refer to the STEhat results 10
from performing step 2 above as timeluced STP. / [t —tlp: (t')dt
0

Theorem 1 Given an STPwith the following properties:

10 10
1. The input preference functions; are linear or semi- = / t'py(t")dt — t/ p1(tdt'.
convex piecewise linear (intuitively, semi-convex piece- 0 0

wise linear means that there are no “V” shaped seg-, . .
ments); P gNotlce that because of the pseudo-controllability of the ne

Bi _ work (it being already minimal), the last equation reduces t
2. The STPis ps_eudg—cgntr_ollable, | E(T))—t, since therjolopl(t’)dt’ _ 1andf010 Fpu ()t —
3. The probability distributions on the uncertainty con- p(7,), whereE(T?) is the expected value of the random vari-
straints are normal; able T} associated with the duration. A similar derivation
then, using the method described above, the set of expectégsed on the triangld BD then results in another induced
globally preferred solutions to the initial STan be com-  functionhs(t) = 10— [E(Ty) —t]. The final induced function
puted in polynomial time. h becomes the combination bf andhs: e.g. the intersection

The first condition of the theorem is needed to ensure tha®f the areas under the functions.
the induced STPhas only functions that are semi-convex, This approach can be generalized for regression over semi-
which is required for the application of the chop solverconvex piecewise linear preference functions. [gt be
method in step 3 (a polynomial-time procedure). Steps 2 anthe intersection of, linear segmentg}., ... f3., where for
3 are required to simplify the induced functions to lineardu  eachk, [a% ., b% ] is the segment for whiclfpc = fX..
tions involving expected values (see the example belowg. ThWhen regressing ¢ over fp¢ to compute the induced pref-

[0,10] [0,10]

0,10] p1(1)
Normal(4,1)

10
FE = t)pu ()t



erence functiorh 4 5, we have:
bn
A

k=1,..., nva

(1]

hap(t) fBe(t' —t)pac(t)dt

bk
. fhc(t —t)pact)dt,

(2]

(3
which simplifies the calculation to sums involving linear
functions.

This example shows how with suitable restrictions on the 4]
shapes of the preference functions and on whether the all-
pairs computation eliminates any of the probability mdss, t [5]
computation of induced preferences can be made efficient.

6 Discussion and Future Work [6]

We have examined temporal reasoning under the interactions
of preferences and quantitative uncertainty in the corméxt
constraint-based planning. In addition to the formulatién
the STP framework, which augments the Simple Temporal
Problem with both preferences and probabilities, the main
contribution of this paper is to formulate two planning de-[8]
cision problems. Utilizing standard methods from decision
theory, probability theory, and recent advances in coimgtra [g]
satisfaction, we have shown how flexible temporal plans can
be generated that are most preferred based on what the plan-
ning agent believes about the expected times of events; angl ]
how the agent can update its preferences, given its beliefs.

Fundamentally, preferences and uncertainty are orthdgona
aspects of the decision problem. Both planning decisions w ]
have considered are approaches to combining the two aspects
which is most relevant depends on the aim of the plannin
agent and the questions being asked of it. The first decisiog,lz]
to evaluate the probability of a plan existing with at least a
given preference, is useful to determine whether a plardran
can meet a minimum quality threshold. The second decisior{,13]
to update preferences based on beliefs, is useful to fdutor t
uncertainty into a single criterion for plan evaluation sitkes
these two decision problems, the proposed framework can be
applied to related problems; for instance, an agent migtk se (14
to determine the maximal preference level at which a solu-
tion exists with a given probability. Whenp = 1 and the
probabilities are uniform, this corresponds to certaimfeof
strong controllability addressed jf5)].

Future theoretical efforts include characterizing motikyfu
the computational complexity of S?& and refining the
bound on the probability that a plan exists with given qual-[15]
ity w.r.t. preference. In addition to implementing the nuath
described in this paper, our major next step is to extend the
results here to address issues in planning under a dynami7]
execution strategy. Of particular importance will be torexa
ine the interactions between preferenceswaai constraints
that emerge when determining the controllability of flegibl
plans, as described [A1].

(7]

[15]
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